Abstract

In this paper a mathematical model for the transmission dynamics of dengue fever disease is presented. We present a SITR (susceptible, infected, treated, recovery) and ASI (aquatic, susceptible, infected) epidemic model to describe the interaction between human and dengue fever mosquito populations. In order to assess the transmission of Dengue fever disease, the susceptible population is divided into two, namely, careful and careless human susceptible population. The model presents four possible equilibria: two disease-free and two endemic equilibrium.The results show that the disease-free equilibrium point is locally and globally asymptotically stable if the reproduction number is less than unity. Endemic equilibrium point is locally and globally asymptotically stable under certain conditions using additive compound matrix and Lyapunov method respectively. Sensitivity analysis of the model is implemented in order to investigate the sensitivity of certain key parameters of dengue fever disease with treatment, Careful and Careless Susceptibles on the transmission of Dengue fever Disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.