Abstract
We consider a model of adversarial dynamics consisting of three populations, labelled Blue, Green, and Red, which evolve under a system of first order nonlinear differential equations. Red and Blue populations are adversaries and interact via a set of Lanchester combat laws. Green is divided into three sub-populations: Red supporters, Blue supporters, and Neutral. Green support for Red and Blue leads to more combat effectiveness for either side. From Green’s perspective, if either Red or Blue exceeds a size according to the capacity of the local population to facilitate or tolerate, then support for that side diminishes; the corresponding Green population reverts to the neutral sub-population, who do not contribute to combat effectiveness of either side. The mechanism for supporters deciding if either Blue or Red is too big is given by a logistic-type interaction term. The intent of the model is to examine the role of influence in complex adversarial situations typical in counter-insurgency, where victory requires a genuine balance between maintaining combat effectiveness and support from a third party whose backing is not always assured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.