Abstract
As urban expansion continues, the intensifying land surface temperature (LST) underscores the critical need for accurate predictions of future thermal environments. However, no study has investigated which method can most effectively and consistently predict the future LST. To address these gaps, our study employed four methods—the multiple linear regression (MLR), geographically weighted regression (GWR), random forest (RF), and artificial neural network (ANN) approach—to establish relationships between land use/cover and LST. Subsequently, we utilized these relationships established in 2006 to predict the LST for the years 2012 and 2018, validating these predictions against the observed data. Our results indicate that, in terms of fitting performance (R2 and RMSE), the methods rank as follows: RF > GWR > ANN > MLR. However, in terms of temporal stability, we observed a significant variation in predictive accuracy, with MLR > GWR > RF > ANN for the years 2012 and 2018. The predictions using MLR indicate that the future LST in 2050, under the SSP2 and SSP5 scenarios, is expected to increase by 1.8 ± 1.4 K and 2.1 ± 1.6 K, respectively, compared to 2018. This study emphasizes the importance of the MLR method in predicting the future LST and provides potential instructions for future heat mitigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have