Abstract

Details are given of the development and application of a numerical model for predicting free-surface flows in estuarine and coastal basins using the finite volume method. Both second- and third-order accurate and oscillation free explicit numerical schemes have been used to solve the shallow water equations. The model deploys an unstructured triangular mesh and incorporates two types of mesh layouts, namely the ‘cell centred’ and ‘mesh vertex’ layouts, and provides a powerful mesh generator in which a user can adjust the mesh-size distribution interactively to create a desirable mesh. The quality of mesh has been shown to have a major impact on the overall performance of the numerical model. The model has been applied to simulate two-dimensional dam break flows for which transient water level distributions measured within a laboratory flume were available. In total 12 model runs were undertaken to test the model for various flow conditions. These conditions include: (1) different bed slopes (ranging from zero to 0.8%), (2) different upstream and downstream water level conditions, and (3) initially wet and dry bed conditions, downstream of the dam. Detailed comparisons have been made between model predicted and measured water levels and good agreement achieved between both sets of results. The model was then used to predict water level and velocity distributions in a real estuary, i.e. the Ribble Estuary, where the bed level varies rapidly at certain locations. In order to model the whole estuary, a 1-D numerical model has also been used to model the upper part of the estuary and this model was linked dynamically to the 2-D model. Findings from this application are given in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call