Abstract

The refill operation of Three Gorges Reservoir (TGR) in the end of flood season significantly alters the water level regimes in Poyang Lake by reducing Yangtze River flow discharge. This study aims to investigate the impact of TGR refill operation on water level probability distribution of the Poyang Lake. The multiple linear regression model was established to estimate the water level with catchment inflow and Yangtze River flow as explanatory variables. A probability distribution of water level was derived and the refill operation effects were quantified by comparing the water level distribution at Xingzi station in the Poyang Lake before and after TGR. It is revealed that Yangtze River flow, rather than the catchment inflow is the dominant factor affecting the water level of Poyang Lake during TGR refill operation period. Results also show that the water level distribution estimated by the derived distribution method can be accepted as a theoretical distribution and has a comparable accuracy as the directly fitted distribution method before TGR. The derived method can be adapted to the environment change, thus is well suited for estimating the water level distribution after TGR. It is observed that Xingzi water levels with different design frequencies have been reduced due to the TGR refill operation. The water level reductions induced by TGR refill operation are 1.28, 0.87, and 0.50 m corresponding with design frequencies of 50, 90 and 99 %, respectively. The results from this work would improve the understanding of the TGR effects on the downstream river–lake system and provide scientific evidences for formulating better scheme for water resources management in this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call