Abstract

Rainfall patterns and landform characteristics are controlling factors in runoff and soil erosion processes. At a hillslope scale, there is still a lack of understanding of how rainfall temporal patterns affect these processes, especially on slopes with a wide range of gradients and length scales. Using a physically-based distributed hydrological model (InHM), these processes under different rainfall temporal patterns were simulated to illustrate this issue. Five rainfall patterns (constant, increasing, decreasing, rising-falling and falling-rising) were applied to slopes, whose gradients range from 5° to 40° and projective slope lengths range from 25 m to 200 m. The rising-falling rainfall generally had the largest total runoff and soil erosion amount; while the constant rainfall had the lowest ones when the projective slope length was less than 100 m. The critical slope of total runoff was 15°, which was independent of rainfall pattern and slope length. However, the critical slope of soil erosion amount decreased from 35° to 25° with increasing projective slope length. The increasing rainfall had the highest peak discharge and erosion rate just at the end of the peak rainfall intensity. The peak value discharges and erosion rates of decreasing and rising-falling rainfalls were several minutes later than the peak rainfall intensity.

Highlights

  • Rainfall patterns and landform characteristics are controlling factors of the runoff and soil erosion processes in natural catchments [1,2]

  • The main purpose of this study is to investigate the impact of rainfall temporal patterns on infiltration, runoff generation and soil erosion on slopes with a range of slope lengths and gradients, using a physically based modelling approach

  • The effect of rainfall pattern on runoff generation and soil erosion processes on slopes were analysed through numerical modelling

Read more

Summary

Introduction

Rainfall patterns and landform characteristics are controlling factors of the runoff and soil erosion processes in natural catchments [1,2]. Previous studies have recognized that the rainfall patterns greatly affect the runoff generation and soil erosion processes (e.g., [8,9]). Parsons and Stone [10] adopted five rainfalls with different patterns but the same total kinetic energy to the soil surface. They found that the soil erosion amount under a constant-intensity storm are reduced by about 25% compared to varied-intensity storms, and that the eroded sediments are coarser under the constant-intensity pattern. An et al [8] used the similar rainfall patterns and indicated that, the total runoff was nearly not affected by the rainfall pattern, the varied intensity patterns yield 1–5 times more soil losses than even-intensity patterns and the rising pattern resulted in a consistently higher soil loss relative to the other four rainfall patterns

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.