Abstract

ABSTRACTThis paper presents a depth-integrated, non-hydrostatic model for coastal water waves. The shock-capturing ability of this model is its most attractive aspect and is essential for computation of energetic breaking waves and wet–dry fronts. The model is solved in a fraction step manner, where the total pressure is decomposed into hydrostatic and non-hydrostatic parts. The hydrostatic pressure component is integrated explicitly in the framework of the finite volume method, whereas most of the existing models use the finite difference method. The fluxes across the cell faces are computed in a Godunov-based manner through an efficient multi-stage scheme. The flow variables are reconstructed at each cell face to obtain second-order spatial accuracy. Wave breaking is treated as a shock by locally switching off the non-hydrostatic pressure in the wave front. A moving shoreline boundary is also incorporated. The robustness and accuracy of the developed model are demonstrated through numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.