Abstract
By combining modelling and experimental work, new insights have been gained into the combined oxidation/carburisation of 9Cr-1Mo steels in CO2 rich environments. The breakaway-oxidation process is preceded by the rejection of carbon into the scale due to the poor solubility of carbon in the metal. Experimental TEM work reveals the formation of a carbide rich layer near the substrate surface which forms a further barrier against carbon ingress. The eventual oxidation of this layer could contribute to breakaway oxidation. A 2D finite-difference based diffusion model developed in combination with Thermo-Calc software underlines the role of specimen geometry on breakaway initiation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have