Abstract

A theoretical model has been developed to analyse bubble rise in water and subsequent impact and bounce against a horizontal glass plate. The multiscale nature of the problem, where the bubble size is on the millimetre range and the film drainage process happens on the micrometre to nanometre scale requires the combined use of different modelling techniques. On the macro scale we solve the full Navier–Stokes equations in cylindrical coordinates to model bubble rise whereas modelling film drainage on the micro scale is based on lubrication theory because the film Reynolds number becomes much smaller than unity. Quantitative predictions of this model are compared with experimental data obtained using synchronised high-speed cameras. Video recording of bubble rise and bounce trajectories are combined with interferometry data to deduce the position and time-dependent thickness of the thin water film trapped between the deformed bubble and the glass plate. Bubble rise velocity indicated that the boundary condition at the bubble surface was tangentially immobile. Quantitative comparisons are presented for bubbles of different size to quantify similarities and differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.