Abstract
We present a general theoretical model for the spatio-temporal dynamics of animal contests. Inspired by interactions between physical particles, the model is formulated in terms of effective interaction potentials, which map typical elements of contest behaviour into empirically verifiable rules of contestant motion. This allows us to simulate the observable dynamics of contests in various realistic scenarios, notably in dyadic contests over a localized resource. Assessment strategies previously formulated in game-theoretic models, as well as the effects of fighting costs, can be described as variations in our model's parameters. Furthermore, the trends of contest duration associated with these assessment strategies can be derived and understood within the model. Detailed description of the contestants' motion enables the exploration of spatio-temporal properties of asymmetric contests, such as the emergence of chase dynamics. Overall, our framework aims to bridge the growing gap between empirical capabilities and theory in this widespread aspect of animal behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.