Abstract

The photovoltaic (PV)-based distribution generation system has a nonlinear power characteristic curve under random variation in solar irradiance, ambient temperature and electric load. As a result, for the accurate detection and tracking of the maximum power points (MPPs), it is necessary to design an optimal controller with dynamic control capability. As solution to the above issue, this paper presents an intelligent Mamdani-based fuzzy logic controller (M-FLC) for maximum power point tracking (MPPT) of a PV system. Different test cases with respect to different possible load and irradiance variations in grid connected mode of operation are investigated. To confirm the power quality indices within IEEE standards specification, fast Fourier transform (FFT) analysis of voltage and current at the point of common coupling has been done. A detailed comparison has been made in between PV without MPPT, with incremental conductance and proposed fuzzy logic control (FLC). The results show an enhance efficiency of energy production from PV and reflects the effectiveness of the proposed scheme justifying its real time application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.