Abstract

In the recent decades, Photovoltaic (PV) power generation has become one of the primary power source due to the advantages such as less maintenance and environmental benefits. Moreover, the generation source is ultimately free and abundant. However, the major barriers related to PV power generation are low power conversion efficiency, high cost of PV modules and nonlinearity in output power. Because of low power conversion efficiency, PV systems should work always at its Maximum Power Point (MPP). A power conditioning unit with Maximum Power Point Tracking (MPPT) technique is employed in the PV systems to harvest maximum power. The main function of MPPT is to detect the MPP for the given conditions and operate the system at that point. In this paper Fuzzy Logic Controller (FLC) based variable step size MPPT for a standalone solar PV system is presented. Solar PV system with Fuzzy based MPPT controller is built in Matlab /Simulink. The performance of proposed variable step size fuzzy MPPT algorithm is studied for different input conditions and analyzed in terms of performance parameters such as tracking speed, steady state oscillations, response under variations in irradiance and temparature, average output power and output power ripple. The results are compared with Variable Step Size Incremental Conductance (VSS InC) MPPT algorithm and conventional InC based PV system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call