Abstract

While additive manufacturing based on multiphoton polymerization is currently considered to be a very promising technique for the fabrication of 3D micro‐ and nanostructures, long fabrication times are a major limitation of this approach. Parallelization of the fabrication process is an important technique to overcome this issue. The fabrication process is parallelized by imaging a 1920 × 1080 pixel spatial light modulator into an ultrasensitive triplet–triplet annihilation resist. However, proximity effects between close pixels generate uncontrolled polymerization and make the controlled fabrication of 3D structures difficult. This work models light propagation and chemical interactions in the system to predict fabricated structures with a view to precompensating plot data and improving 3D resolution by performing optical and chemical proximity correction. A simple model gives reasonable predictions of fabricated structures helping us fabricate fully 3D structures in parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.