Abstract

This paper studies the effect of cutting strategy on surface generation in ultra-precision raster milling (UPRM). By adding the influences of shift length and tool-interference on surface generation, a holistic surface roughness prediction model is built which takes into account the effect of cutting parameters, tool path generation, geometry parameters of diamond tool, the size of the workpiece and machine characteristics. The optimal shift ratio can be achieved by changing factors involved in developing cutting strategy to improve surface quality without decreasing machining efficiency. Conditions for the presence of tool-interference in UPRM are presented. Based on the holistic surface generation model, an integrated system is developed to automatically generate the numerical control program, and predict surface quality and machining efficiency. A series of cutting experiments has been conducted to verify the proposed surface generation model and test the performance of the integrated system. The experimental results agree well with the predicted results from the model and the integrated system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.