Abstract

In the present article, a new hybrid approach of neuro-grey modeling (NGM) technique has been proposed for modeling and optimization of multiple process attributes of the electro discharge machining (EDM) process. It is proposed to simulate through an artificial neural network (ANN) for characterization of multiple process attributes followed by multiple process attributes optimization by using grey relational analysis (GRA) technique. A multineuron ANN of logistic sigmoid activation function has been designed. Levenberg–Marquardt algorithm involving second order error optimization has been chosen for training of the ANN because of its inherent merits. Then, using grey relational analysis (GRA) technique, a grey relational grade has been determined, which effectively represents the aggregate of different process attributes. As a result, a multi-attribute optimization can be converted into optimization of a single grey relational grade. The ANN is simulated first to characterize surface roughness (Ra), depth of heat-affected zone, microhardness value of machined surface, and material removal rate (MRR) with respect to current and pulse duration. Then, optimal values of current and pulse duration have been obtained. The NGM technique is found to be better and easy to implement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.