Abstract

Co-solvent recovery in supercritical extraction is addressed here through a theoretical description of the behaviour of a CO 2 + co-solvent mixture into a cascade of cyclonic separators, such as those existing in conventional fractionation processes based on depressurisation cascades. Conversely to the conventional simplified approach that considers a separator as a plain theoretical stage, our study proposes a dynamic modelling that accounts for the probable droplet entrainment by the light phase and the re-vaporisation phenomenon after the valve. Fractionation experiments of CO 2 + n-propyl alcohol mixtures were operated in a three-stage fractionation pilot, and experimental results are compared with simulation ones. The study demonstrates the relevance of our modelling, and points out the importance of entrainment effects, especially for low-pressure operated separators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.