Abstract

In the article, a model for predicting the energy losses caused by the flexural vibrations of rubber tracks, rubber belts, and rubber-bushed metal link-tracks for off-road vehicles is proposed, and a test stand and an experimental procedure are developed to identify the mechanical parameters of this model. The track or belt is represented by a chain of discrete rigid links connected by revolute joints, and a discrete spring-element is placed in parallel with multiple Maxwell-elements in each joint to capture the flexural rigidity and damping of the real track or belt. The mechanical parameters of the joint are found by testing real tracks or belts under cyclic bending. The models consisting of three, four, or five Maxwell-elements per joint are the most successful in predicting the response of a sample rubber track to cyclic bending. The spring-damping properties of tracks and belts identified with the method discussed herein can be applied in simulation studies on the interaction of tracked vehicles and soil. Furthermore, vehicle elements such as rubber bushings for suspension systems, rubber torsion springs, and oil-filled and rubber torsion dampers can be tested with this method to find their spring-damping properties required by vehicle dynamics simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call