Abstract

This paper presents the modelling and characterisation of a magneto-rheological elastomer isolator device (MREID) under impact loading using the adaptive neuro-fuzzy inference system (ANFIS) technique. The characterisation of an MREID under impact loading was performed using an impact pendulum test rig, and the data obtained from the experimental work was processed in form of force-velocity and force-displacement characteristics. In order to predict MREID behaviour in simulation analysis, multiple ANFIS models were proposed. A single ANFIS model represented a single kinetic energy produced by the impact mass used in experimental work. The experimental data was then used to train the ANFIS in predicting MREID behaviour and validating its performance. For verification, the prediction model, a parametric model (namely, the modified Bouc-Wen model) was developed, and the models were compared. The proposed interpolated multiple ANFIS model predicted the behaviour of the MREID with a high level of accuracy. The proposed model produced a better prediction than the modified Bouc-Wen model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.