Abstract

The feeling of horror within movies or games relies on the audience's perception of a tense atmosphere—often achieved through sound accompanied by the on-screen drama—guiding its emotional experience throughout the scene or game-play sequence. These progressions are often crafted through an a priori knowledge of how a scene or game-play sequence will playout, and the intended emotional patterns a game director wants to transmit. The appropriate design of sound becomes even more challenging once the scenery and the general context is autonomously generated by an algorithm. Towards realizing sound-based affective interaction in games this paper explores the creation of computational models capable of ranking short audio pieces based on crowdsourced annotations of tension, arousal and valence. Affect models are trained via preference learning on over a thousand annotations with the use of support vector machines, whose inputs are low-level features extracted from the audio assets of a comprehensive sound library. The models constructed in this work are able to predict the tension, arousal and valence elicited by sound, respectively, with an accuracy of approximately 65%, 66% and 72%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.