Abstract

Accurate and quantitative prediction of ischemic tissue fate could improve decision-making in the clinical treatment of acute stroke. The goal of the present study is to explore the novel use of support vector machine (SVM) to predict infarct on a pixel-by-pixel basis using only acute cerebral blood flow (CBF), apparent diffusion coefficient (ADC) MRI data. The efficacy of SVM prediction model was tested on three stroke groups: 30-min, 60-min, and permanent middle cerebral-artery occlusion (n=12 rats for each group). CBF, ADC and relaxation time constant (T2) were acquired during the acute phase up to 3h and again at 24h. Infarct was predicted using only acute (30-min) stroke data. Receiver-operating characteristic (ROC) analysis was used to quantify prediction accuracy. The areas under the receiver-operating curves were 86±2.7%, 89±1.4%, and 93±0.8% using ADC+CBF data for the 30-min, 60-min and permanent middle cerebral artery occlusion (MCAO) group, respectively. Adding neighboring pixel information and spatial infarction incidence improved performance to 88±2.8%, 94±0.8%, and 97±0.9%, respectively. SVM prediction compares favorably to a previously published artificial neural network (ANN) prediction algorithm operated on the same data sets. SVM prediction model has the potential to provide quantitative frameworks to aid clinical decision-making in the treatment of acute stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call