Abstract
In part 1 of this series, a three-dimensional, structural analysis, finite element program has been developed to predict the stress distribution in wood poles with and without spiral grain and variable material properties. This program serves as a basis for a model to predict the strength and failure location in full-size wood poles. Fundamental to this model is the ability to quantify the effects of key material and geometric properties of the pole. This paper deals with the enhancement of the program to quantify the effect of knots and their associated cross grain on the stress distribution of wood poles. The technique is based on the theoretical behavior of laminar fluid flow around an elliptical obstruction. The flow-grain analogy was employed to develop empirical relationships between knot diameter and pertinent variables (grain deviation angle near the knot and area of influence of the knot). Prior to the development of the empirical relationships, a study was conducted to determine the size and distribution of knots in Douglas-fir and western redcedar poles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have