Abstract

An approach is presented to model elastic waveguides of arbitrary cross-section coupled to infinite solid media. The formulation is based on the scaled boundary-finite element method. The surrounding medium is approximately accounted for by a dashpot boundary condition derived from the acoustic impedances of the infinite medium. It is discussed under which circumstances this approximation leads to sufficiently accurate results. Computational costs are very low, since the surrounding medium does not require discretization and the number of degrees of freedom on the cross-section is significantly reduced by utilizing higher-order spectral elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.