Abstract

Climate change has significant effects on forest ecosystems around the world. Since tree diameter increment determines forest volume increment and ultimately forest production, an accurate estimate of this variable under future climate change is of great importance for sustainable forest management. In this study, we modeled tree diameter increment under the effects of current and expected future climate change, using multilayer perceptron (MLP) artificial neural networks and linear mixed-effect model in two sites of the Hyrcanian Forest, northern Iran. Using 573 monitoring fixed-area (0.1 ha) plots, we measured and calculated biotic and abiotic factors (i.e., diameter at breast height (DBH), basal area in the largest trees (BAL), basal area (BA), elevation, aspect, slope, precipitation, and temperature). We investigated the effect of climate change in the year 2070 under two reference scenarios; RCP 4.5 (an intermediate scenario) and RCP 8.5 (an extreme scenario) due to the uncertainty caused by the general circulation models. According to the scenarios of climate change, the amount of annual precipitation and temperature during the study period will increase by 12.18 mm and 1.77 °C, respectively. Further, the results showed that the impact of predicted climate change was not very noticeable and the growth at the end of the period decreased by only about 7% annually. The effect of precipitation and temperature on the growth rate, in fact, neutralize each other, and therefore, the growth rate does not change significantly at the end of the period compared to the beginning. Based on the models’ predictions, the MLP model performed better compared to the linear mixed-effect model in predicting tree diameter increment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.