Abstract

In this study, a speed-route joint choice model considering traveler’s safety concerns is proposed to concurrently model traveler’s safety-oriented travel speed and route choice behavior. Specifically, the safe-speed choice behavior is modeled as a trade-off process between perceived traffic safety and efficiency using a disutility function. The safe-route choice behavior is described by the proposed Mean-excess Crash Risk Cost model, where the route safety is modeled as a random variable following a specific distribution, and traveler’s concerns about both reliability and unreliability aspects of safety variability are considered. The model is accommodative to account for the random nature and the traveler’s perception of traffic safety. Also, the travel time cost is considered, which is depicted as a parallel criterion of travel safety in the route choice model. Moreover, the heterogeneities of travelers’ safety concerns in both the choices of speed and route are considered in the proposed joint model. Then, the study formulated the equilibrium problem with the two behavior elements (speed and route) and two choice criteria (safety and time), based on the assumption that all travelers tend to maximize their disutility when choosing speed while minimizing their travel safety variability and travel time. To illustrate the model, Nguyen and Dupuis, Sioux falls, and Changsha arterial networks are conducted as numerical studies. The result demonstrates the model’s capability in depicting travelers’ trade-off between safety and time when selecting the optimal travel speed. Considering the impact of route safety unreliability makes the model sensible to describe travelers’ safety-concerned route choice behavior. The model is also flexible to account for travelers’ crash risk aversion heterogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.