Abstract
Summary Vertical hydraulic fracturing is widely used to develop low-permeability gas reservoirs. Uneven distribution of formation permeability and stress leads to multiple-wing hydraulic fractures with different lengths, which results in the wellbore not being the center of the circular stimulated reservoir volume (SRV) region. Therefore, to simulate the wellbore pressure of this phenomenon, a semianalytical model of the off-center multiwing fractured well in radial composite gas reservoirs is presented and the corresponding solution method is shown. The model is verified with the numerical solution, and eight flow regimes can be distinguished under the ideal case, which includes bilinear flow, fracture interference, linear flow, radial flow of inner region, transition flow of inner region, and radial flow of inner region. Compared with the previous model in which the well is at the center of radial composite gas reservoirs, in this paper we present an obvious “step” after the inner region radial flow regime, which is related to the off-center distance and radius of the inner region. In addition, the effects of some important parameters (such as off-center distance, permeability mobility, inner region radius, and fracture distribution) on typical curves are discussed. Finally, field well testing data are used to verify the accuracy of the model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have