Abstract

Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.