Abstract

The excessive use of plastics in modern life has led to a significant increase in production and a corresponding rise in plastic waste generation. The slow degradation of plastics results in the introduction and accumulation of microplastics (MP) in the environment, posing environmental and health risks. River networks, acting as conduits between terrestrial and marine environments, play a crucial role in controlling the transport of MP. Predicting the complex processes of MP pathways in these environments is an ongoing challenge. To address this issue, we propose a model that integrates the advection-dispersion equation with anthropogenic MP loads and hydraulic river network characteristics. The validity of the model was assessed using literature data from three river networks worldwide. Model results show a good agreement between predictions and field observations (R2=0.72). Consequently, predicted MP data was used to perform a potential pollution assessment through the pollution load index, revealing in most cases higher MP contamination in headwaters stream and a dilution effect along the river network. The structure of the proposed model allows its further implementation to account for other transport mechanisms, interactions with other emerging contaminants (i.e., pharmaceuticals), and connections with other riverine environments, making it a valuable tool for understanding and mitigating MP pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.