Abstract

A geothermal heat exchanger requires special care in its design when it comes to peak heating and cooling demands of the building as the installation may incur in material damages due to the extreme temperatures reached by the heat carrying liquid. The peak demands tend to last a few days at most and the theoretical model used to predict the thermal response of the geothermal heat exchanger has, therefore, to consider the thermal inertia of the heat carrying liquid, the grout, and the ground close to the boreholes. With this in mind, the present work discusses a theoretical model that provides, among other things, the heat injection rates per unit pipe length of the different pipes in the borehole in terms of the bulk temperatures of the heat carrying liquid during those peak heating and cooling demands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call