Abstract

Analytical one-dimensional time-dependent photocurrent models are developed from new solutions to the ambipolar transport equation. The p-n junction model incorporates the effects of an electric field in the quasi-neutral region, finite diode length, and an arbitrary generation function g=f(x,t). It provides improved accuracy over the Wirth-Rogers and Enlow-Alexander models. An approximate photocurrent solution for p-n-n/sup +/, n-p-p/sup +/, and p-i-n diode junctions is developed considering high-injection effects. Comparison with experimental data shows that a single set of physical parameters is adequate to characterize the model with respect to dose rate, pulse width, and geometry.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call