Abstract

The bimolecular reaction HO+CO ixH+CO2 involves the intermediate formation of HOCO. As a consequence, the rate coefficient shows a complicated temperature and pressure dependence. An optimized E- and J-resolved rigid activated complex RRKM theory, with simplified E- and J-resolved pressure-dependent collision efficiencies, fits the available experimental data and allows for extrapolations to unexplored conditions. Experiments between 80 and 2370 K, between 10−3 and 103 bar in the bath gas He, and below 1 bar in Ar, N2, CF4 SF6, and H2O at 298 K, serve as the database. A limiting low-pressure rate constant for HO removal of ko=[1.0×1013 exp(−8050 K/T)+9.0×1011 exp(−2300 K/T)+1.01×1011 exp (−30 K/T)] cm3 mol−1 s−1 and a limiting high-pressure rate constant of k∞=[1.23×1015 exp (−7520 K/T)+1.1×1013 exp(−1850 K/T)+8.0×1011 exp(−120 K/T] cm3 mol−1 s−1 will reproduce the results. The pressure dependence of the rate coefficient as a function of the temperature is represented for the bath gases He, Ar, N2, CF4, SF6, and H2O. Rate coefficients for HOCO formation and HOCO dissociation are also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call