Abstract
A wide variety of models and methods for the prediction of the surface pressure spectrum beneath turbulent boundary layers is presented and assessed. A thorough review is made of the current state of the art in empirical and analytical pressure spectrum models; and predictions of zero, adverse, favorable, and nonequilibrium pressure gradient boundary layers are examined using a steady Reynolds-averaged Navier–Stokes (RANS) prediction of a subset of a pressure gradient boundary-layer benchmark flow case. The existing empirical models show either an inability to adapt to pressure gradient conditions or an oversensitivity to model inputs, producing nonphysical results under certain flow conditions. New empirical models are created using a gene expression programming machine-learning algorithm based on both experimental and RANS inputs. The various input options for analytical Toegepast Natuurwetenschappelijk Onderzoek (TNO) modeling are presented and assessed, and recommendations for best practices are made. The developed models show improvement in both accuracy and robustness over existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.