Abstract

The mechanical behavior of unsaturated soils can be interpreted using either modified total stress or a modified effective stress approach depending on the type of soils and various scenarios of drainage conditions of pore-water and pore-air. Recent studies suggest that the bearing capacity of unsaturated cohesive soils can be more reliably estimated using the modified total stress approach (MTSA) rather than the modified effective stress approach (MESA). In the present study, a modeling technique (extending Finite Element Analysis, FEA) is proposed to estimate the bearing capacity of shallow foundations in unsaturated cohesive soils by simulating the vertical stress versus surface settlement behaviors of shallow foundations extending the MTSA. The proposed technique is verified with the model footing test results in unsaturated cohesive soils. Commercial finite element software, SIGMA/W (GeoStudio 2012, Geo-Slope Int. Ltd.) is used for this study. Details of estimating the unsaturated soil parameters (i.e. total cohesion, modulus of elasticity and Poisson’s ratio) required for the FEA are also presented taking account of the influence of matric suction. Good agreements were observed between the measured bearing capacity values and those from the FEA extending the MTSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call