Abstract

This study presents a modeling approach for predicting strain localization during sheet metal stamping processes focused on automotive engineering applications. The so-called stretching-to-bending ratio, ρ, is proposed to characterize the loading conditions acting on an element during stamping processes. Then, localized strain or necking strain is suggested to be a function of ρ. Different stretch–bending tests with different tool radii, i.e., R3, R6, R10, and R50 are conducted for two automotive sheet metals, DP800 and AA6010, to identify their forming limits under combined stretch–bend loads. The calibrated necking limit curve of the AA6016 sheet is then employed in AutoForm R10 software to predict the necking and failure of a stamped panel. Agreement with the experimental observation of failure positions of the panel validates the usefulness of the proposed modeling approach in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call