Abstract

In sheet metal stamping, the occurrence of strain localization in a deformed sheet is considered a failure. As so, sheet metal’s formability is conventionally evaluated using the Forming Limit Diagram (FLD), which separates the principal strain space into safety and unsafety regions by a Forming Limit Curve (FLC). This study presents an evaluation method for detecting strain localization based on Digital Image Correlation (DIC) during the experiment. The commercial DIC software ARAMIS is adopted to monitor the strain-field distribution on the deformed specimen’s surface. A detailed analysis of the proposed method is presented considering Nakajima tests conducted for two automotive sheet metals: AA6016 and DP800. The identified FLC based on the proposed method is compared with that of well-established methods such as ISO 12004:2-2008 and time-dependent methods. For both investigated materials, the proposed method presents a lower FLC than the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.