Abstract
AbstractFibrous depth filters are frequently used for the purification of gas streams with low dust loadings, as well as processes where a high initial filtration efficiency is required (e.g., clean rooms for aseptic production). One tool suitable for supporting the development of optimized filter media is the use of numerical simulations. The drawback of this technique is the high computational resources required. In this work, a new and fast approach based on a one‐dimensional model was applied. Structural characteristics (e.g., porosity distribution and fiber diameter) of two different filter media were successfully determined using a novel X‐ray microscope. These characteristics were incorporated in the filtration model, and their influence on the calculations was evaluated. It was found that the porosity distribution does have an impact on local (microscopic) deposition rates, but only a minor influence on the macroscopic filtration efficiency (around 3%). Benefits of the model are the application of measured structural data and the low computational expense. Compared to experimental data (VDI 3926 / ISO 11057), the prediction of the filtration efficiency can be improved by incorporating the structural data in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.