Abstract

Mathematical models accounting for well-known evidences relating to the dynamics of interleukin 2, helper and regulatory T cells are presented. These models extend an existent model (the so-called cross-regulation model of immunity), by assuming IL-2 as the growth factor produced by helper cells, but used by both helper and regulatory cells to proliferate and survive. Two model variants, motivated by current literature, are explored. The first variant assumes that regulatory cells suppress helper cells by limiting IL-2 production and consuming the available IL-2; i.e. they just trigger competition for IL-2. The second model variant adds to the latter competitive mechanism the direct inhibition of helper cells activation by regulatory cells. The extended models retain key dynamical features of the cross-regulation model. But such reasonable behavior depends on parameter constraints, which happen to be realistic and lead to interesting biological discussions. Furthermore, the introduction of IL-2 in these models breaks the local/specific character of interactions, providing new properties to them. In the extended models, but not in the cross-regulation model, the response triggered by an antigen affects the response to other antigens in the same lymph node. The first model variant predicts an unrealistic coupling of the immune reactions to all the antigens in the lymph node. In contrast, the second model variant allows the coexistent of concomitant tolerant and immune responses to different antigens. The IL-2 derived from an ongoing immune reaction reinforces tolerance to other antigens in the same lymph node. Overall the models introduced here are useful extensions of the cross-regulation formalism. In particular, they might allow future studies of the effect of different IL-2 modulation therapies on CD4+ T cell dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.