Abstract

Fast radio bursts (FRBs) are one of the most mysterious astronomical phenomena nowadays. The identification of their origin requires more observations in the future and, importantly, deep understandings of the existing observational data. By fitting the redshift and energy distributions of 15 Parkes FRBs, we try to derive their intrinsic energy function and the cosmic evolution of their burst rates. Specifically, while the energy function is assumed as usual to have a single-power-law form, the burst rates are considered to be proportional to the cosmic star formation rates by a redshift-dependent coefficient. Some plausible fittings are obtained, which indicate the power-law assumptions are feasible and effective. The values of the power-law indices could be used to independently constrain candidate FRB models, although parameter degeneracies still exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.