Abstract

Operation of a pulse aerosol system of fire fighting designed for effective extinguishing of fires in gas wells is modeled by an example of quenching a methane-air subsonic plume escaping from a nozzle. The system consists of two separate parts: a charge of a unitary solid propellant (gas generator) and a container with fine-grain powder of a flame retardant. The combustion of the mixture is described by a one-step global reaction; the effect of the concentration of flame-retardant vapors on the combustion process is taken into account through reduction of the pre-exponent in the Arrhenius law and is described by an empirical dependence. A computational experiment shows that the use of the pulse aerosol system of fire fighting ensures effective transport of fine aerosol particles of the flame retardant and its vapors to the combustion zone in amounts sufficient to suppress the ignition spot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call