Abstract

In retinal synapses between cones and luminosity type horizontal cells (LHC), it was previously found in this laboratory that repetitive red flashes progressively strengthened the LHC's response to red flash, whereas weakened the LHC's response to green flash; repetitive green flash remarkably depressed the LHC's red response, but caused little changes in the cell's green response. However, the detailed mechanisms underlying these phenomena are not entirely clear. In the present study, based on an ion-channel model described mainly in the form of Hodgkin-Huxley equations, possible mechanisms of the short-term synaptic modification are investigated. The simulation results suggest that: (1) the auto-enhancement effect might be induced by the Ca2+-dependent process on the post-synaptic AMPA receptors, which could lead to changes of the ionic channel's properties; (2) the asymmetric response to red- and green-flashes and the mutual-chromatic suppression effects might be attributed to the regulatory effects on the presynaptic glutamate release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call