Abstract

Partial nitrification has proven to be an economic way for treatment of industrial N-rich effluent, reducing oxygen and external COD requirements during nitrification/denitrification process. One of the key issues of this system is the intermediate nitrite accumulation stability. This work presents a control strategy and a modeling tool for maintaining nitrite build-up. Partial nitrification process has been carried out in a sequencing batch reactor at 30 degrees C, maintaining strong changing ammonia concentration in the reactor (sequencing feed). Stable nitrite accumulation has been obtained with the help of an on-line oxygen uptake rate (OUR)-based control system, with removal rate of 2 kg NH4 (+)-N x m(-3)/day and 90%-95% of conversion of ammonium into nitrite. A mathematical model, identified through the occurring biological reactions, is proposed to optimize the process (preventing nitrate production). Most of the kinetic parameters have been estimated from specific respirometric tests on biomass and validated on pilot-scale experiments of one-cycle duration. Comparison of dynamic data at different pH confirms that NH3 and NO2- should be considered as the true substrate of nitritation and nitratation, respectively. The proposed model represents major features: the inhibition of ammonia-oxidizing bacteria by its substrate (NH3) and product (HNO2), the inhibition of nitrite-oxidizing bacteria by free ammonia (NH3), the INFluence of pH. It appears that the model correctly describes the short-term dynamics of nitrogenous compounds in SBR, when both ammonia oxidizers and nitrite oxidizers are present and active in the reactor. The model proposed represents a useful tool for process design and optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call