Abstract

This study investigated the influence of dissolved oxygen concentration and aeration time on nitrification and nitrite accumulation in an attempt to optimize the recently developed biological-partial-nitritation process for the treatment of strong nitrogen wastewaters. Investigation of dissolved oxygen concentration on ammonium and nitrite oxidation was carried out in a batch reactor. The dissolved oxygen concentration of 0.5 mg O 2 /L inhibited both ammonium as well as nitrite oxidation, while increase of dissolved oxygen concentration to ~1 mg O 2 /L increased the ammonium oxidation rate and was comparable to that at higher dissolved oxygen concentrations. Experiments were carried out in a sequencing batch reactor for more than 100 days to investigate the influence of aeration time on nitrite accumulation. The dissolved oxygen concentration was controlled at ~1.0 mg O 2 /L (in the range of 0.8-1.5 mg/L) during the aeration stage, and volatile suspended solid was maintained at 2.0 g/L while temperature and pH were 30±1oC and 8.3±0.1, respectively. In a typical cycle, complete nitrification occurred at aeration time longer than 6 h. When the aeration time was reduced to 4 h., ~80 % of partial nitritation was achieved. With a further reduction in aeration time to 3 h., nearly 1:1 nitrite/ammonium ratio was yielded. This result revealed that for the reactor design, aeration time determined by feasibility experiments must be considered based on the nitrogen strength in wastewater and biomass concentration in the reactor with dissolved oxygen concentration of ~1.0 mg O 2 /L for satisfactory partial nitrification with subsequent processes such as anaerobic ammonium oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.