Abstract

Abstract This study presents results from the Community Climate System Model 3 (CCSM3) forced with early to middle Miocene (~20–14 Ma) vegetation, topography, bathymetry, and modern CO2. A decrease in the meridional temperature gradient of 6.5°C and an increase in global mean temperature of 1.5°C are modeled in comparison with a control simulation forced with modern boundary conditions. Seasonal poleward displacements of the subtropical jet streams and storm tracks compared to the control simulation are associated with changes in Hadley circulation and significant cooling of the polar stratosphere, consistent with previously predicted effects of global warming. Energy budget calculations indicate that reduced albedo and topography were responsible for Miocene warmth in the high-latitude Northern Hemisphere while a combination of increased ocean heat transport and reduced albedo was responsible for relative warmth in the high-latitude Southern Hemisphere, compared to the present. Model–data analysis suggests Miocene climate was significantly warmer and wetter than simulated here, consistent with previous uncoupled Miocene models and supports recent reconstructions of Miocene CO2 substantially higher than present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.