Abstract

A two-dimensional finite element (2-D FE) model was developed in order to simulate the puffing of a dough ball being dehydrated under vacuum with microwave energy. The model enabled the coupling of thermal and solid mechanics effects providing an insight into the mechanisms of puffing of food stuffs during vacuum microwave dehydration. The model predicted the rise in temperature reasonably well for low salt contents. The model suggests puffing is due to two mechanisms: first, the difference in pressure between air trapped in the dough and the chamber pressure of the vacuum microwave dehydrator; second, the generation of vapour due to the temperature rise in the dough. The temperature distribution is primarily determined by the penetration depth of the microwaves into the material. It was further shown that the partial collapse of dough balls in the later stages of the drying process can be attributed to the softening of dough at higher temperatures and air loss throughout the drying process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.