Abstract
The aim of this work was to predict, from the material constants, mixed-mode energy release rates in orthotropic materials, in particular the general cases in which the crack is aligned at a random angle to the principal material direction, normal to the plane of orthotropy. Two-dimensional finite element models with various fibre orientations were generated. The finite element models were validated by comparing two sets of contour plots of deformation, one resulting from the finite element analysis and the other from moiré interferograms of the experimental work. On comparison there was shown to be a strict similarity between experimentally determined and computational deformation fields. Variations of the energy release rates were investigated for both rapid and stable crack growth. This was accomplished by generating two-dimensional stable crack growth finite element models. In general, energy release rates were found to be strongly affected by the fibre orientation. An increase of the angle of the crack growth direction caused a decrease of the mode I energy release rate and, by contrast, an increase of the mode II energy release rate, but the mode II energy release rate was always a small fraction of the mode I value. Crack extension caused a gradual increase of the mode I energy release rate both for coplanar and non-coplanar crack growth. However, there was no significant effect found on the mode II energy release rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.