Abstract
The kinetics of microstructure and texture evolution during static recrystallization of a cold-rolled and annealed f.c.c. material is simulated by coupling a finite element model of microstructural deformation with a Monte Carlo simulation of recrystallization. The salient features of the simulations include a nucleation model for recrystallization based on subgrain growth and the modeling of simultaneous recovery during recrystallization. The simulation results quantify the effects of non-uniform stored energy distribution and orientation gradients present in the cold-worked microstructure on recovery by subgrain growth, and hence on the spatial distribution of nuclei and their orientations. The growth of these recrystallized nuclei in the presence of continued recovery of the substructure has been simulated for initial cold-work levels of ε=0.7 and 1.1 obtained by plane strain compression. The simulations are shown to be potentially capable of capturing the formation and evolution of cube texture commonly observed in cold-rolled and annealed f.c.c. materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.