Abstract

AbstractWe report that assimilating total electron content (TEC) into a coupled thermosphere‐ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward prereversal enhancement (PRE) electric field (E field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature, and compositions are adjusted simultaneously. The improvement of duskside PRE E field calculation over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E field calculation promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E field is enabled through self‐consistent thermosphere and ionosphere coupling processes captured in the model. This study suggests that the PRE E field that is critical in driving the evening equatorial plasma instability could be better forecasted by assimilation of TECs in the 10 min cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.