Abstract
A semi-idealized marine ecosystem model, designed as a heuristic tool for exploring the population dynamics of non-inducible versus toxic forms of Pfiesteria is described. The model is based on empirical evidence suggesting that these differing functional types of Pfiesteria also differ substantially in terms of what they eat and how they utilize it to optimize their growth. Non-inducible strains are similar to other mixotrophic dinoflagellates, whereas toxic strains may consume organic matter and detritus, produce toxins and attack fish. In our model formulation we represent these differences in a simplified way: the non-inducible strain is kleptochloroplastidic and it can take up DIN, but it cannot utilize DON, whereas the toxic strain is heterotrophic, it cannot utilize DIN, but it can utilize DON directly. These differences give rise to very different impacts on prey and nutrient concentrations in our model. Under high DIN/DON ratio conditions, the non-inducible cells grew much faster and were therefore more likely to bloom, but this advantage is substantially mitigated when the DIN/DON ratio is low. A turbulence parameterization was also incorporated into our model. The effect of this was to reduce the grazing rate of Pfiesteria when turbulence levels are high. According to our model, increased turbulence is more detrimental to the toxic functional type because it grows more slowly. The further imposition of microzooplankton grazing in the model showed that top-down control effects can be very significant, which is consistent with both laboratory and field studies and the general idea that plankton blooms can only happen in the absence of substantial grazing control. In general, our model results suggest that non-toxic blooms are more likely to occur in more turbulent inorganic-nutrient rich conditions, which are often found in more open coastal and estuarine waters that are subject to high inorganic loading. In contrast, toxic blooms are more likely to occur in calm, organic-nutrient rich conditions, which are often found in shallow, protected tributaries that are subject to high organic nutrient loading. Our model results also support the idea that the absence of strong grazing pressure is a prerequisite to bloom formation for both non-inducible and toxic strains of Pfiesteria. These results are generally consistent with observed patterns of toxic Pfiesteria blooms in Chesapeake Bay, the Neuse River of North Carolina and many other coastal and estuarine environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have