Abstract

Abstract In this study, we examined how future climate change will affect streamflow responses in the Kessem watershed. Climate variables from SSP2-4.5 and SSP5-8.5 emission scenarios were extracted from GCMs for the 2040s (2031–2060) and 2070s (2061–2090). The bias-corrected precipitation and temperature were converted into streamflow using a calibrated SWAT model. The simulated output of the future streamflow for the periods 2040s and 2070s was compared with the base period (1992–2020) and presented as percentage changes. During calibration and validation, the SWAT model showed Nash–Sutcliffe efficiency (NSE) values of 0.79 and 0.77, as well as coefficient of determination (R2) values of 0.8 and 0.79, demonstrating its capability of simulating streamflow. The annual mean maximum and minimum temperatures are predicted to increase, with a pronounced increase in the minimum temperature for the mid-term and long-term futures under both emission scenarios. As we approach the end of the century, we see an increase in annual mean rainfall and streamflow under the SSP5-8.5 emission scenario. The increment in annual mean rainfall (streamflow) is expected to be 3% (12.5%) and 23% (48.8%) for the 2040s and 2070s, respectively, under the SSP5-8.5 emission scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call