Abstract

Cemented paste backfill (CPB) is a mixture of dewatered tailings, hydraulic binders and water. In addition to contributing to the stability of mine workplaces, CPB greatly benefits the environment by minimizing surface tailings disposal. Hence, it has become one of the most commonly used ways in mine backfilling around the world. Temperature can significantly affect the mechanical properties of cemented backfill. A source of heat in CPB is produced by binder hydration. Hence, a FLAC based numerical model is developed to predict and analyse the heat developed by hydrating CPB structures. To validate the model, results of the developed model are compared with three case studies (mathematical, laboratory, and field investigations). The validation results show a good agreement between the developed model and these cases. The effects of stope geometry, thermal properties of both rock and CPB, filling rate, binder content and initial boundary conditions are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.