Abstract
Cemented paste backfill (CPB) is an emerging mine-backfill technique that allows environmentally hazardous tailings returning back to the underground openings or stopes, thereby maximizing the safety, efficiency and productivity of process/operation. CPB provides efficient ground support for mine structures and permits a fully excavation and extraction of ore bodies. It also decreases surface tailings storage requirements and thus, rehabilitation/reclamation costs after closure. This paper investigates the effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of CPB. In this respect, a new laboratory apparatus (CUAPS: curing under applied pressure system) was used to mimic the in-situ CPB conditions to compare the performance of consolidated backfills with unconsolidated conventional moulds (i.e. undrained or drained). The results have shown that for a given backfill recipe, CUAPS-consolidated samples always present better strengths than those obtained from mould-unconsolidated samples i.e. the underestimation of backfill strength. A full evolution of geotechnical and geochemical properties of CPB was compared at three binder contents (3, 4.5 and 7wt.%) and curing times (7, 14 and 28days). The application of stress during curing was found to contribute positively to the CPB hardening process and hence, the strength and geotechnical properties as a result of the removal of water and binder hydration. Consequently, CUAPS-consolidated samples can be agreeably used to better assess in situ CPB behavior and to achieve an ideal CPB recipe in terms of safety and economy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.